
Optimiser - Fantasy Football

Aim of the Project

Rules of Fantasy Premier League (FPL)

Squad Composition

Starting Lineup Constraints

Team Limits

Transfer Rules

Data Collection

Player History Extraction

Feature Engineering

Feature Correlation Insights

XGBoost Model Training

Model Performance:

Overfitting Check

Team Optimisation Methods

Predicting Next Gameweek Points

Captain Selection

Optimising Starting XI

Transfer Recommendations

Example Findings

Aim of the Project

🔗 App link: Streamlit App

This project focuses on optimising Fantasy Football teams by maximising predicted points for upcoming gameweeks. The key

objectives are:

Predict total points a user's Fantasy Premier League (FPL) team will score.

Select the optimal starting XI lineup.

Choose the best captain for maximum points.

Recommend player transfers to improve team performance.

Rules of Fantasy Premier League (FPL)

When building and optimizing a Fantasy Premier League squad, the following rules and constraints must be respected to ensure

squad validity:

Squad Composition

Total squad size: 15 players

Positions:

2 Goalkeepers

5 Defenders

5 Midfielders

3 Forwards

Starting Lineup Constraints

Starting XI size: 11 players

https://fploptimiser-bcwqgawjkb2446ahkwdbet.streamlit.app/

Formation: The starting lineup must follow one of the allowed FPL formations:

3-4-3, 3-5-2

4-4-2, 4-3-3

5-3-2, 5-4-1

Exactly 1 goalkeeper must be in the starting XI.

Team Limits

Maximum players from one Premier League club: 3 in the whole squad (including bench and starting XI).

Transfer Rules

Transfers per gameweek: 1 free transfer per gameweek, if not used they carry over to next gameweek (max 3); additional

transfers cost points (-4).

Squad validity: All transfers must maintain a valid squad according to the above rules.

Transfer limits in optimization: The model respects allowed number of transfers.

Data Collection

Data is sourced directly from the official Fantasy Premier League API:

The API data is clean and structured, requiring minimal preprocessing.

Player History Extraction

A function fetches detailed historical stats for each player across all gameweeks:

We loop through all players, gather their histories, and concatenate into a single DataFrame:

Finally, player metadata is merged for easier identification:

1 url = "https://fantasy.premierleague.com/api/bootstrap-static/"

2 response = requests.get(url).json()

3

4 players_df = pd.DataFrame(response['elements']) # All players

5 teams_df = pd.DataFrame(response['teams']) # All teams

6 positions_df = pd.DataFrame(response['element_types']) # Position info

1 def get_player_history(player_id):

2 url = f"https://fantasy.premierleague.com/api/element-summary/{player_id}/"

3 r = requests.get(url).json()

4 history_df = pd.DataFrame(r['history'])

5 return history_df

6

1 all_histories = []

2 for player_id in players_df['id']:

3 df = get_player_history(player_id)

4 df['player_id'] = player_id

5 all_histories.append(df)

6

7 full_history_df = pd.concat(all_histories, ignore_index=True)

Data size: 27,605 rows × 50 columns.

Feature Engineering

We use XGBoost to predict player points for the next gameweek.

To enhance prediction, rolling averages for recent gameweeks are calculated for key features like points, minutes played, and

expected goal involvements (xGI):

Similar rolling averages are created for minutes and xGI.

xGI (Expected Goal Involvement) is the sum of a player's expected goals (xG) and expected assists (xA), estimating their

overall contribution to potential goals.

1 full_history_df = full_history_df.merge(players_df[['id', 'first_name', 'second_name', 'team_name',

'position']],

2 left_on='player_id', right_on='id')

1 full_history_df = full_history_df.sort_values(by=["player_id", "round"])

2 full_history_df['points_shifted'] = full_history_df.groupby('player_id')['total_points'].shift(1)

3

4 full_history_df['avg_points_last_3'] = full_history_df.groupby('player_id')['points_shifted'].rolling(window=3,

min_periods=1).mean().reset_index(level=0, drop=True)

5 full_history_df['avg_points_last_5'] = full_history_df.groupby('player_id')['points_shifted'].rolling(window=5,

min_periods=1).mean().reset_index(level=0, drop=True)

6 full_history_df['avg_points_last_10'] = full_history_df.groupby('player_id')

['points_shifted'].rolling(window=10, min_periods=1).mean().reset_index(level=0, drop=True)

Feature Correlation Insights

High correlation with points:

starts (0.56)

Rolling averages of points (last 3,5,10 gameweeks ~0.47–0.50)

Rolling averages of minutes (~0.44–0.45)

Rolling averages of xGI (~0.38–0.40)

transfers_in (0.28), selected (0.32)

Low predictive value features:

fdr (-0.01), was_home (0.01), transfers_out (0.16)

Multicollinearity refers to a situation where two or more input features are highly correlated, making it hard to isolate their

individual effects - but this is not a concern for XGBoost, as its tree-based structure selects the most informative features and is

inherently robust to feature correlation.

XGBoost Model Training

The dataset is split by gameweek for training and testing:

1 max_round_adj = fpl_data['round_adjusted'].max()

2 train_data = fpl_data[fpl_data['round_adjusted'] < max_round_adj]

3 test_data = fpl_data[fpl_data['round_adjusted'] == max_round_adj]

4

5 X_train = train_data[features]

6 y_train = train_data['total_points']

7

Model hyperparameters and training:

Model Performance:

The model shows moderate predictive power with an acceptable error margin, indicating it captures player point patterns

reasonably well.

Overfitting Check

Training and testing errors are close, indicating the model generalizes well without overfitting.

8 X_test = test_data[features]

9 y_test = test_data['total_points']

1 # Define model with some common hyperparameters

2 xgb_model = XGBRegressor(

3 n_estimators=300,

4 max_depth=2,

5 learning_rate=0.03,

6 subsample=0.6,

7 colsample_bytree=0.6,

8 reg_alpha=2,

9 reg_lambda=3,

10 gamma=1,

11 random_state=42,

12 n_jobs=-1

13)

14

15 # Train the model

16 xgb_model.fit(X_train, y_train)

R² Score Proportion of variance in actual data explained

by the model (Closer to 1 is ideal)

0.476 The model explains

47.6% of the variation in

goal outcomes -

moderate fit

Mean Squared Error Average of squared prediction errors (penalizes

big errors more closer to 0 is ideal)

3.335 On average, predictions

are 3.335 goals² off -

some larger mistakes

present

Mean Absolute Error Average of absolute prediction errors (same unit

as target closer to 1 is ideal)

0.912 Predictions are off by

~0.91 goals on average -

quite accurate for

football data

Metric Definition Value What the Value Means

From this gplot we see train RMSE is very near Train MSE this means

The model is not overfitting (train error isnʼt way lower than test error).

It s̓ generalizing well to unseen data.

The fit is balanced and stable.

Team Optimisation Methods

Predicting Next Gameweek Points

The model predicts each player s̓ points for the upcoming gameweek:

Captain Selection

The captain is chosen as the player with the highest predicted points in the starting lineup:

Optimising Starting XI

Given a 15-player squad, players are first grouped by their playing position:

1 fpl_data['next_gw_pred'] = xgb_model.predict(fpl_data[features])

1 agg_preds = starters_next_gw.groupby('player_id', as_index=False)['next_gw_pred'].sum()

2

3 # Find player with max aggregated predicted points

4 best_captain_row = agg_preds.loc[agg_preds['next_gw_pred'].idxmax()]

1 players_by_pos = {'Goalkeeper':[], 'Defender':[], 'Midfielder':[], 'Forward':[]}

2 for pid in squad_ids:

3 pos = player_info[pid]['position']

We then ensure there are two goalkeepers, iterating through each as a potential starter. The goalkeeper with the highest

predicted points is selected as the starting keeper, and the other is assigned to the bench:

Next, the function iterates through all valid Fantasy Premier League formations to find the optimal lineup. The standard formations

considered are:

3-4-3

3-5-2

4-4-2

4-3-3

5-3-2

5-4-1

For each formation, the function generates all possible combinations of defenders, midfielders, and forwards that meet the

formation requirements:

For each position, all possible groups of players of the required size are generated to fill the formation slots. The function will

iterate through these to find valid squads.

For each valid combination, the lineup is constructed by combining the goalkeeper, defenders, midfielders, and forwards:

4 players_by_pos[pos].append(pid)

1 gk_candidates = players_by_pos['Goalkeeper']

2 if len(gk_candidates) < 2:

3 return None, None

4

5 for gk in gk_candidates:

6 bench_gk = [pid for pid in gk_candidates if pid != gk][0]

1 for D_req, M_req, F_req in [

2 (3, 4, 3), (3, 5, 2),

3 (4, 4, 2), (4, 3, 3),

4 (5, 3, 2), (5, 4, 1)

5]:

6 if len(def_candidates) < D_req or len(mid_candidates) < M_req or len(fwd_candidates) < F_req:

7 continue

8

9 def_combos = combinations(def_candidates, D_req)

10 mid_combos = combinations(mid_candidates, M_req)

11 fwd_combos = combinations(fwd_candidates, F_req)

1 mid_combos = list(mid_combos)

2 fwd_combos = list(fwd_combos)

3

4 for d_combo in def_combos:

5 for m_combo in mid_combos:

6 for f_combo in fwd_combos:

7 xi_ids = [gk] + list(d_combo) + list(m_combo) + list(f_combo)

8

9 team_counts = {}

10 valid = True

11 for pid in xi_ids:

This ensures no more than three players from the same real-life team are included in the starting XI.

Among all valid lineups, the one with the highest predicted points is selected as the optimal starting XI.

Transfer Recommendations

To make informed transfer suggestions, we employ a Top-K heuristic to manage computational complexity effectively:

1. Identify the bottom performers: We select the bottom k=6 players from the current squad based on predicted points.

2. Identify potential top players: We find the top k=20 players outside the squad with predicted points greater than 1.

Select the bottom performing players in the current squad based on their predicted points for the next gameweek. These are the

prime candidates to be transferred out

From the pool of all available players outside the current squad, select those with a predicted points value greater than 1 for the

upcoming gameweek. From these, take the top performers as potential transfer-in options:

For every number of transfers k from 0 up to the allowed number, all combinations of transferring out k players from the bottom

candidates and transferring in k players from the top outside candidates are tested.

When k=0 , simply evaluate the current squad as is.

For k > 0 , generate all combinations of possible transfers and evaluate each candidate squad:

12 team = player_info[pid]['team_name']

13 team_counts[team] = team_counts.get(team, 0) + 1

14 if team_counts[team] > 3:

15 valid = False

16 break

17 if not valid:

18 continue

1 pts = total_pred_points(xi_ids)

2 if pts > best_pts:

3 best_pts = pts

4 best_xi = xi_ids

1 # Select the bottom topk_out players by predicted points from the current squad (worst performers)

2 bottom_current = current_players_df.nsmallest(topk_out, 'next_gw_pred')['player_id'].tolist()

1 # Potential players to bring in (outside current squad)

2 potential_ins_all = set(unique_players['player_id']) - current_player_ids

3 potential_ins_df = pred_next_gw[pred_next_gw['player_id'].isin(potential_ins_all)].copy()

4

5 # Filter to include only those with predicted points > 1

6 potential_ins_df = potential_ins_df[potential_ins_df['next_gw_pred'] > 1]

7

8 # Select the top topk_in players by predicted points

9 top_potential_ins = potential_ins_df.nlargest(topk_in, 'next_gw_pred')['player_id'].tolist()

1 for k in range(0, transfers_allowed + 1):

2 # When k=0: no transfers, just check the current squad

3 if k == 0:

This approach balances thoroughness and computational feasibility by focusing only on the worst-performing players in the

current squad and the best available players outside it. By limiting transfer candidates to these Top-K groups, the algorithm

efficiently searches for the optimal squad that maximizes predicted points for the next gameweek.

Example Findings

For Gameweek 25, with 3 transfers allowed and Matz Sels as captain:

Initial predicted points: 38

After optimisation:

Captain changed to Salah

Transfers in Minteh, Diaz, Marmoush

New predicted points: 87 (an increase of 48 points)

4 if valid_squad(current_player_ids):

5 xi_ids, bench_ids = pick_best_starting_xi(current_player_ids)

6 if xi_ids is not None:

7 total_pts = total_pred_points(xi_ids)

8 if total_pts > best_score:

9 best_score = total_pts

10 best_squad = current_player_ids

11 best_starting_xi = xi_ids

12 best_bench = bench_ids

13 best_out = []

14 best_in = []

15 continue

16

17 # For k > 0, consider combinations

18 outs_combos = combinations(bottom_current, k)

19 ins_combos = list(combinations(top_potential_ins, k))

20

21 for out_ids in outs_combos:

22 out_set = set(out_ids)

23 remaining_players = set(current_squad_list) - out_set

24

25 for in_ids in ins_combos:

26 in_set = set(in_ids)

27

28 candidate_squad = remaining_players | in_set

29

30 if not valid_squad(candidate_squad):

31 continue

32

33 xi_ids, bench_ids = pick_best_starting_xi(candidate_squad)

34 if xi_ids is None:

35 continue

36

37 total_pts = total_pred_points(xi_ids) # Transfer penalty

38

39 if total_pts > best_score:

40 best_score = total_pts

41 best_squad = candidate_squad

42 best_starting_xi = xi_ids

43 best_bench = bench_ids

44 best_out = out_ids

45 best_in = in_ids

This demonstrates the effectiveness of the model and optimiser in improving team potential.

